Title: | Functional Cheng and Church Bi-Clustering |
---|---|
Description: | The FunCC algorithm allows to apply the FunCC algorithm to simultaneously cluster the rows and the columns of a data matrix whose inputs are functions. |
Authors: | Agostino Torti [aut, cre], Marta Galvani [aut, cre], Alessandra Menafoglio [aut], Simone Vantini[aut] |
Maintainer: | Agostino Torti <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0 |
Built: | 2025-03-08 03:15:40 UTC |
Source: | https://github.com/cran/FunCC |
The find_best_delta function evaluate the results of FunCC algorithm in terms of total H-score value, the number of obtained bi-clusters and the number of not assigned elements when varying the delta value
find_best_delta( fun_mat, delta_min, delta_max, num_delta = 10, template.type = "mean", theta = 1.5, number = 100, alpha = 0, beta = 0, const_alpha = FALSE, const_beta = FALSE, shift.alignement = FALSE, shift.max = 0.1, max.iter.align = 100 )
find_best_delta( fun_mat, delta_min, delta_max, num_delta = 10, template.type = "mean", theta = 1.5, number = 100, alpha = 0, beta = 0, const_alpha = FALSE, const_beta = FALSE, shift.alignement = FALSE, shift.max = 0.1, max.iter.align = 100 )
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
delta_min |
scalar: Manimum value of the maximum of accepted score, should be a real value > 0 |
delta_max |
scalar: Maximum value of the maximum of accepted score, should be a real value > 0 |
num_delta |
integer: number of delta to be evaluated between delta_min and delta_max |
template.type |
character: type of template required. If template.type='mean' the template is evaluated as the average function, if template.type='medoid' the template is evaluated as the medoid function. |
theta |
scalar: Scaling factor should be a real value > 1 |
number |
integer: Maximum number of iterations |
alpha |
binary: if alpha=1 row shift is allowed, if alpha=0 row shift is avoided |
beta |
binary: if beta=1 row shift is allowed, if beta=0 row shift is avoided |
const_alpha |
logicol: indicates if row shift is contrained as constant |
const_beta |
logicol: indicates if col shift is contrained as constant |
shift.alignement |
logicol: If shift.alignement=True the shift aligment is performed, if shift.alignement=False no alignment is performed |
shift.max |
scalar: shift.max controls the maximal allowed shift, at each iteration, in the alignment procedure with respect to the range of curve domains. t.max must be such that 0<shift.max<1 |
max.iter.align |
integer: maximum number of iteration in the alignment procedure |
a dataframe containing for each evaluated delta: Htot_sum (the sum of totale H-score), num_clust (the number of found Bi-clusters), not_assigned (the number of not assigned elements)
## Not run: data("funCCdata") find_best_delta(funCCdata,delta_min=0.1,delta_max=20,num_delta=20,alpha=1,beta=0,const_alpha=TRUE) ## End(Not run)
## Not run: data("funCCdata") find_best_delta(funCCdata,delta_min=0.1,delta_max=20,num_delta=20,alpha=1,beta=0,const_alpha=TRUE) ## End(Not run)
The funCC algorithm allows to simultaneously cluster the rows and the columns of a data matrix where each entry of the matrix is a function or a time series
funcc_biclust( fun_mat, delta, theta = 1, template.type = "mean", number = 100, alpha = 0, beta = 0, const_alpha = FALSE, const_beta = FALSE, shift.alignement = FALSE, shift.max = 0.1, max.iter.align = 100 )
funcc_biclust( fun_mat, delta, theta = 1, template.type = "mean", number = 100, alpha = 0, beta = 0, const_alpha = FALSE, const_beta = FALSE, shift.alignement = FALSE, shift.max = 0.1, max.iter.align = 100 )
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
delta |
scalar: Maximum of accepted score, should be a real value > 0 |
theta |
scalar: Scaling factor should be a real value > 1 |
template.type |
character: type of template required. If template.type='mean' the template is evaluated as the average function, if template.type='medoid' the template is evaluated as the medoid function. |
number |
integer: Maximum number of iteration |
alpha |
binary: if alpha=1 row shift is allowed, if alpha=0 row shift is avoided |
beta |
binary: if beta=1 row shift is allowed, if beta=0 row shift is avoided |
const_alpha |
logicol: Indicates if row shift is contrained as constant. |
const_beta |
logicol: Indicates if col shift is contrained as constant. |
shift.alignement |
logicol: If shift.alignement=True the shift aligment is performed, if shift.alignement=False no alignment is performed |
shift.max |
scalar: shift.max controls the maximal allowed shift, at each iteration, in the alignment procedure with respect to the range of curve domains. t.max must be such that 0<shift.max<1 |
max.iter.align |
integer: maximum number of iteration in the alignment procedure |
a list of two elements containing respectively the Biclustresults and a dataframe containing the parameters setting of the algorithm @examples data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) res
funcc_show_bicluster_coverage graphically shows the coverage of each bi-cluster in terms of percentage of included functions
funcc_show_bicluster_coverage( fun_mat, res_input, not_assigned = TRUE, max_coverage = 1 )
funcc_show_bicluster_coverage( fun_mat, res_input, not_assigned = TRUE, max_coverage = 1 )
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
res_input |
An object produced by the funcc_biclust function |
not_assigned |
logicol: if true also the cluster of not assigned elements is included |
max_coverage |
scalar: percentage of maximum cumulative coverage to be shown |
a figure representing for each bi-cluster the coverage in terms of percentage of included functions
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_coverage(funCCdata,res)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_coverage(funCCdata,res)
funcc_show_bicluster_dimension graphically shows the dimensions of each bi-cluster (i.e. number of rows and columns)
funcc_show_bicluster_dimension(fun_mat, res_input)
funcc_show_bicluster_dimension(fun_mat, res_input)
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
res_input |
An object produced by the funcc_biclust function |
a figure representing the dimensions of each bi-cluster (i.e. number of rows and columns)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_dimension(funCCdata,res)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_dimension(funCCdata,res)
funcc_show_bicluster_hscore graphically shows the hscore vs the dimension (i.e. number of rows and columns) of each bi-cluster
funcc_show_bicluster_hscore(fun_mat, res_input)
funcc_show_bicluster_hscore(fun_mat, res_input)
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
res_input |
An object produced by the funcc_biclust function |
a figure representing the dimensions of each bi-cluster (i.e. number of rows and columns)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_hscore(funCCdata,res)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_bicluster_hscore(funCCdata,res)
funcc_show_block_matrix graphically shows the bi-clusters positions in the original data matrix
funcc_show_block_matrix(fun_mat, res_input)
funcc_show_block_matrix(fun_mat, res_input)
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
res_input |
An object produced by the funcc_biclust function |
a figure representing the bi-clusters positions in the original data matrix
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_block_matrix(funCCdata,res)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_block_matrix(funCCdata,res)
funcc_show_results graphically shows the results of the bi-clustering
funcc_show_results( fun_mat, res_input, only.mean = FALSE, aligned = FALSE, warping = FALSE )
funcc_show_results( fun_mat, res_input, only.mean = FALSE, aligned = FALSE, warping = FALSE )
fun_mat |
The data array (n x m x T) where each entry corresponds to the measure of one observation i, i=1,...,n, for a functional variable m, m=1,...,p, at point t, t=1,...,T |
res_input |
An object produced by the funcc_biclust function |
only.mean |
logicol: if True only the template functions for each bi-cluster is displayed |
aligned |
logicol: if True the alignemd functions are displayed |
warping |
logicol: if True also a figure representing the warping functions are displayed |
a figure representing each bi-cluster in terms of functions contained in it or templates
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_results(funCCdata,res)
data("funCCdata") res <- funcc_biclust(funCCdata,delta=10,theta=1,alpha=1,beta=0,const_alpha=TRUE) funcc_show_results(funCCdata,res)
funCC.data is a functional dataset displaying block structure
data(funCCdata)
data(funCCdata)
An object of class array
of dimension 30 x 7 x 240.
data(funCCdata)
data(funCCdata)